Pasar al contenido principal

page search

Community Organizations CGIAR
CGIAR
CGIAR
Acronym
CGIAR

Location

CGIAR is the only worldwide partnership addressing agricultural research for development, whose work contributes to the global effort to tackle poverty, hunger and major nutrition imbalances, and environmental degradation.


It is carried out by 15 Centers, that are members of the CGIAR Consortium, in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector.


The 15 Research Centers generate and disseminate knowledge, technologies, and policies for agricultural development through the CGIAR Research Programs. The CGIAR Fund provides reliable and predictable multi-year funding to enable research planning over the long term, resource allocation based on agreed priorities, and the timely and predictable disbursement of funds. The multi-donor trust fund finances research carried out by the Centers through the CGIAR Research Programs.


We have almost 10,000 scientists and staff in 96 countries, unparalleled research infrastructure and dynamic networks across the globe. Our collections of genetic resources are the most comprehensive in the world.


What we do


We collaborate with research and development partners to solve development problems. To fulfill our mission we:


  • Identify significant global development problems that science can help solve
  • Collect and organize knowledge related to these development problems
  • Develop research programs to fill the knowledge gaps to solve these development problems
  • Catalyze and lead putting research into practice, and policies and institutions into place, to solve these development problems
  • Lead monitoring and evaluation, share the lessons we learn and best practices we discover;
  • Conserve, evaluate and share genetic diversity
  • Strengthen skills and knowledge in agricultural research for development around the world

Making a difference


We act in the interests of the world’s poorest and most vulnerable. Our track record spans four decades of research.


Our research accounted for US$673 million or just over 10 percent of the US$5.1 billion spent on agricultural research for development in 2010. The economic benefits run to billions of dollars. In Asia, the overall benefits of CGIAR research are estimated at US$10.8 billion a year for rice, US$2.5 billion for wheat and US$0.8 billion for maize.


It has often been cited that one dollar invested in CGIAR research results in about nine dollars in increased productivity in developing countries.


Sweeping reforms for the 21st century


Political, financial, technological and environmental changes reverberating around the globe mean that there are many opportunities to rejuvenate the shaky global food system. Developments in agricultural and environmental science, progress in government policies, and advances in our understanding of gender dynamics and nutrition open new avenues for producing more food and for making entrenched hunger and poverty history.


The sweeping reforms that brought in the CGIAR Consortium in 2010 mean we are primed to take advantage of these opportunities. We are eagerly tackling the ever more complex challenges in agricultural development. We are convinced that the science we do can make even more of a difference. To fulfill our goals we aim to secure US$1 billion in annual investments to fund the current CGIAR Research Programs.


CGIAR has embraced a new approach that brings together its strengths around the world and spurs new thinking about agricultural research for development, including innovative ways to pursue scientific work and the funding it requires. CGIAR is bringing donors together for better results and enabling scientists to focus more on the research through which they develop and deliver big ideas for big impact. As a result, CGIAR is more efficient and effective, and better positioned than ever before to meet the development challenges of the 21st century.


We are no longer the ‘Consultative Group on International Agricultural Research’. In 2008 we underwent a major transformation, to reflect this and yet retain our roots we are now known simply as CGIAR.

Members:

Resources

Displaying 2546 - 2550 of 12598

3-Nitrooxypropanol substantially decreased enteric methane emissions of dairy cows fed true protein- or urea-containing diets

Diciembre, 2021
Global

Methane is a potent but short-lived greenhouse gas targeted for short-term amelioration of climate change, with enteric methane emitted by ruminants being the most important anthropogenic source of methane. Ruminant production also releases nitrogen to the environment, resulting in groundwater pollution and emissions of greenhouse gas nitrous oxide. We hypothesized that inhibiting rumen methanogenesis in dairy cows with chemical inhibitor 3-nitrooxypropanol (3-NOP) would redirect metabolic hydrogen towards synthesis of microbial amino acids.

Selected shade tree species improved cocoa yields in low-input agroforestry systems in Ghana

Diciembre, 2021
Ghana

CONTEXT
Cocoa agroforestry systems differ in the diversity of shade tree species composition. Though cocoa benefits from shade, there is a lack of species-specific information on shade trees that enhance soil fertility and yield.
OBJECTIVE
We examined how soil characteristics and cocoa yield were affected by eight commonly retained forest tree species, compared with unshaded control plots over a 3-year period.
METHODS

Roadmap for strategic and tactical planning: implementation of an Integrated Agri-food System Initiative (IASI)

Diciembre, 2021
Global

The complexity of agri-food systems demands increasing cross-institutional coordination and collaboration to strengthen science-based decision-making and agricultural planning. Reaching impact at scale requires not only scientific and technical innovations, but a better integration of political, social, economic, health, and environmental considerations through institutional innovations.

Tolerance to soil acidity of soybean (Glycine max L.) genotypes under field conditions Southwestern Ethiopia

Diciembre, 2021
Global

Soil acidity with associated low nutrient availability is one of the major constraints to soybean production in southwestern Ethiopia. Integrated use of lime and acid-tolerant crops is believed to reduce soil acidity and improve crop production. The experiment was conducted in the field condition of Mettu, southwestern Ethiopia during the 2017/18 main cropping season. The experiment comprised fifteen soybean genotypes and two soil amendment (lime and unlimed) treatments arranged in a split-plot design with three replications.

Circular bioeconomy in African food systems: what is the status quo? Insights from Rwanda, DRC, and Ethiopia

Diciembre, 2021

Increasing global food insecurity amidst a growing population and diminishing production resources renders the currently dominant linear production model insufficient to combat such challenges. Hence, a circular bioeconomy (CBE) model that ensures more conservative use of resources has become essential. Specifically, a CBE model that focuses on recycling and reusing organic waste is essential to close nutrient loops and establish more resilient rural-urban nexus food systems. However, the CBE status quo in many African food systems is not established.