Pasar al contenido principal

page search

Biblioteca soil moisture assimilation scheme based on the microwave Land Emissivity Model and the Community Land Model

soil moisture assimilation scheme based on the microwave Land Emissivity Model and the Community Land Model

soil moisture assimilation scheme based on the microwave Land Emissivity Model and the Community Land Model

Resource information

Date of publication
Diciembre 2012
Resource Language
ISBN / Resource ID
AGRIS:US201400107173
Pages
2770-2797

Applications of microwave remote-sensing data in land data assimilation are a topic of current interest and importance due to their high temporal and spatial resolution and availability. However, there have been few studies on land surface sub-grid scale heterogeneity and calculating microwave wetland surface emissivity when directly assimilating gridded Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) satellite brightness temperature (BT) data to estimate soil moisture. How to assimilate gridded AMSR-E BT data for land surface model (LSM) grid cells including various land cover types, especially wetland, is worthy of careful study. The ensemble Kalman filter (EnKF) method is able to resolve the non-linearity and discontinuity in forecast and observation operators, and is widely used in land data assimilation. In this study, considering the influences of land surface sub-grid scale heterogeneity, a satellite data simulation scheme based on the National Center for Atmosphere Research (NCAR) Community Land Model version 2.0 (CLM2.0), microwave Land Emissivity Model (LandEM), Shuffled Complex Evolution (SCE-UA) algorithm and AMSR-E BT observation data is presented to simulate AMSR-E BT data and calibrate microwave wetland surface emissivity; then, a soil moisture data assimilation scheme is developed to directly assimilate the gridded AMSR-E BT data, which consists of the CLM2.0, LandEM and EnKF. The experimental results indicate that the calibrated microwave wetland surface emissivities possess excellent transportability, and that the assimilation scheme is practical and can significantly improve soil moisture estimation accuracy. This study provides a promising solution to improve soil moisture estimation accuracy through directly assimilating gridded AMSR-E BT data for various land cover types such as bare soil, vegetation, snow, lake and wetland.

Share on RLBI navigator
NO

Authors and Publishers

Author(s), editor(s), contributor(s)

Zhang, Shenglei
Shi, Jiancheng
Dou, Youjun

Publisher(s)
Data Provider