Taylor & Francis Group publishes books for all levels of academic study and professional development, across a wide range of subjects and disciplines.
Taylor & Francis Group publishes quality peer-reviewed journals under the Routledge and Taylor & Francis imprints. The newest part of the group, Cogent OA, offers a purely open access program.
Note from Land Portal:
Taylor & Francis Online contains many publications related to land issues, though mostly at the charge of a fee.
Members:
Resources
Displaying 216 - 220 of 661Feature extraction for high-resolution imagery based on human visual perception
Feature extraction is highly important for classification of remote-sensing (RS) images. However, extraction of comprehensive spatial features from high-resolution imagery is still challenging, leading to many misclassifications in various applications. To address the problem, a shape-adaptive neighbourhood (SAN) technique is presented based on human visual perception. The SAN technique is an adaptive feature-extraction method that not only considers spectral feature information but also the spatial neighbourhood as well as the shape of features.
Robust prediction of time-integrated NDVI
The time-integrated normalized difference vegetation index (iNDVI) provides key remote-sensing-derived information on the interactions between vegetation growth, climatic and soil conditions, and land use. Using a time-series of Landsat imagery obtained for Queensland, Australia, it has been demonstrated how robust geostatistics can be used to predict iNDVI. This approach is novel because it explicitly quantifies the uncertainty of prediction and uses Winsorizing, a data-censoring method, to minimize the distorting effects of outliers.
Improving change vector analysis by cross-correlogram spectral matching for accurate detection of land-cover conversion
Time series of vegetation index (VI) information derived from remote sensing is important for land-cover change detection. Although traditional change vector analysis (TCVA) is an effective method for extracting land-cover change information from a time series of VI data, it has the disadvantage of being too sensitive to temporal fluctuations in VI values. The method tends to overestimate the changes and confuse the actual land-cover conversion with the land covers that have not been converted but experience significant VI changes.
Land-use and land-cover change detection in a semi-arid area of Niger using multi-temporal analysis of Landsat images
Recent studies using low-resolution satellite time series show that the Sahelian belt of West Africa is witnessing an increase in vegetation cover/biomass, called re-greening. However, detailed information on local processing and changes is rare or lacking. A multi-temporal set of Landsat images was used to produce land-cover maps for the years 2000 and 2007 in a semi-arid region of Niger, where an anomalous vegetation trend was previously detected.
novel application of satellite radar data: measuring carbon sequestration and detecting degradation in a community forestry project in Mozambique
Background: It is essential that systems for measuring changes in carbon stocks for Reducing Emissions from Deforestation and Forest Degradation (REDD) projects are accurate, reliable and low cost.