CGIAR is the only worldwide partnership addressing agricultural research for development, whose work contributes to the global effort to tackle poverty, hunger and major nutrition imbalances, and environmental degradation.
It is carried out by 15 Centers, that are members of the CGIAR Consortium, in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector.
The 15 Research Centers generate and disseminate knowledge, technologies, and policies for agricultural development through the CGIAR Research Programs. The CGIAR Fund provides reliable and predictable multi-year funding to enable research planning over the long term, resource allocation based on agreed priorities, and the timely and predictable disbursement of funds. The multi-donor trust fund finances research carried out by the Centers through the CGIAR Research Programs.
We have almost 10,000 scientists and staff in 96 countries, unparalleled research infrastructure and dynamic networks across the globe. Our collections of genetic resources are the most comprehensive in the world.
What we do
We collaborate with research and development partners to solve development problems. To fulfill our mission we:
- Identify significant global development problems that science can help solve
- Collect and organize knowledge related to these development problems
- Develop research programs to fill the knowledge gaps to solve these development problems
- Catalyze and lead putting research into practice, and policies and institutions into place, to solve these development problems
- Lead monitoring and evaluation, share the lessons we learn and best practices we discover;
- Conserve, evaluate and share genetic diversity
- Strengthen skills and knowledge in agricultural research for development around the world
Making a difference
We act in the interests of the world’s poorest and most vulnerable. Our track record spans four decades of research.
Our research accounted for US$673 million or just over 10 percent of the US$5.1 billion spent on agricultural research for development in 2010. The economic benefits run to billions of dollars. In Asia, the overall benefits of CGIAR research are estimated at US$10.8 billion a year for rice, US$2.5 billion for wheat and US$0.8 billion for maize.
It has often been cited that one dollar invested in CGIAR research results in about nine dollars in increased productivity in developing countries.
Sweeping reforms for the 21st century
Political, financial, technological and environmental changes reverberating around the globe mean that there are many opportunities to rejuvenate the shaky global food system. Developments in agricultural and environmental science, progress in government policies, and advances in our understanding of gender dynamics and nutrition open new avenues for producing more food and for making entrenched hunger and poverty history.
The sweeping reforms that brought in the CGIAR Consortium in 2010 mean we are primed to take advantage of these opportunities. We are eagerly tackling the ever more complex challenges in agricultural development. We are convinced that the science we do can make even more of a difference. To fulfill our goals we aim to secure US$1 billion in annual investments to fund the current CGIAR Research Programs.
CGIAR has embraced a new approach that brings together its strengths around the world and spurs new thinking about agricultural research for development, including innovative ways to pursue scientific work and the funding it requires. CGIAR is bringing donors together for better results and enabling scientists to focus more on the research through which they develop and deliver big ideas for big impact. As a result, CGIAR is more efficient and effective, and better positioned than ever before to meet the development challenges of the 21st century.
We are no longer the ‘Consultative Group on International Agricultural Research’. In 2008 we underwent a major transformation, to reflect this and yet retain our roots we are now known simply as CGIAR.
Members:
Resources
Displaying 3136 - 3140 of 12598Bioversity International Financial Statements 2020: for the year ended 31 December: Including independent auditor's report
Bioversity International’s financial mandate includes maintaining accountability and transparency in its finances, and to evaluate and communicate direct impact from our work to our donors, partners and the wider research and development community.
In vitro fermentation profile and methane production of Kikuyu grass harvested at different sward heights
Highly digestible forages are associated with an in vitro low-methane (CH4) rumen fermentation profile and thus the possibility of reducing CH4 emissions from forage-based systems. We aimed to assess the in vitro ruminal fermentation profile, including CH4 production, of the top stratum of Kikuyu grass (Cenchrus clandestinus - Hochst. ex Chiov) harvested at different sward heights (10, 15, 20, 25, and 30 cm). Herbage samples (incubating substrate) were analyzed for their chemical composition, in vitro organic matter digestibility (IVOMD), and morphological components.
Synthesis of Learning from a Decade of CGIAR Research Programs
The objective of this forward-looking synthesis was to bring together learning from a decade of experience with CGIAR research programs (CRPs), based on existing evaluative evidence. The purpose of this meta-review is to review lessons from the CRP experience to inform the development of future research programs of One CGIAR. The 2021 Synthesis and Lessons Learned from a Decade of CRPs is delivered in response to the request of the CGIAR System Council and aligned with the synthesis terms of reference endorsed by SIMEC in February 2021.
Seed yam production using high-quality minitubers derived from plants established with vine cuttings
Yam (Dioscorea spp.) is a valuable food security crop in West Africa, where 92% of the world production occurs. The availability of quality seed tubers for increased productivity is a major challenge. In this study, minitubers weighing 1, 3, and 5 g produced from virus-free single-node vine cuttings of two improved yam varieties (Asiedu and Kpamyo) growing in an aeroponics system were assessed for suitability in seed production at a population of 100,000 plants ha−1.
Quantifying Greenhouse Gas Emissions Attributable to Smallholder Livestock Systems in Western Kenya: Cradle to Farm Gate Life Cycle Assessment
Ruminants are central to the economic and nutritional life of much of sub-Saharan Africa, but cattle are now blamed for having disproportionately large negative environmental impact through (amongst other things) emissions of greenhouse gases. However, the exact mechanism behind these emissions is not well-understood and indeed accurate estimates themselves are lacking due to a paucity of reliable data.