What is AGRIS?
AGRIS (International System for Agricultural Science and Technology) is a global public database providing access to bibliographic information on agricultural science and technology. The database is maintained by CIARD, and its content is provided by participating institutions from all around the globe that form the network of AGRIS centers (find out more here). One of the main objectives of AGRIS is to improve the access and exchange of information serving the information-related needs of developed and developing countries on a partnership basis.
AGRIS contains over 8 million bibliographic references on agricultural research and technology & links to related data resources on the Web, like DBPedia, World Bank, Nature, FAO Fisheries and FAO Country profiles.
More specifically
AGRIS is at the same time:
A collaborative network of more than 150 institutions from 65 countries, maintained by FAO of the UN, promoting free access to agricultural information.
A multilingual bibliographic database for agricultural science, fuelled by the AGRIS network, containing records largely enhanced with AGROVOC, FAO’s multilingual thesaurus covering all areas of interest to FAO, including food, nutrition, agriculture, fisheries, forestry, environment etc.
A mash-up Web application that links the AGRIS knowledge to related Web resources using the Linked Open Data methodology to provide as much information as possible about a topic within the agricultural domain.
Opening up & enriching information on agricultural research
AGRIS’ mission is to improve the accessibility of agricultural information available on the Web by:
- Maintaining and enhancing AGRIS, a bibliographic repository for repositories related to agricultural research.
- Promoting the exchange of common standards and methodologies for bibliographic information.
- Enriching the AGRIS knowledge by linking it to other relevant resources on the Web.
AGRIS is also part of the CIARD initiative, in which CGIAR, GFAR and FAO collaborate in order to create a community for efficient knowledge sharing in agricultural research and development.
AGRIS covers the wide range of subjects related to agriculture, including forestry, animal husbandry, aquatic sciences and fisheries, human nutrition, and extension. Its content includes unique grey literature such as unpublished scientific and technical reports, theses, conference papers, government publications, and more. A growing number (around 20%) of bibliographical records have a corresponding full text document on the Web which can easily be retrieved by Google.
Members:
Resources
Displaying 7556 - 7560 of 9579method for mapping corn using the US Geological Survey 1992 National Land Cover Dataset
Long-term exposure to elevated nitrate levels in community drinking water supplies has been associated with an elevated risk of several cancers including non-Hodgkin's lymphoma, colon cancer, and bladder cancer. To estimate human exposure to nitrate, specific crop type information is needed as fertilizer application rates vary widely by crop type. Corn requires the highest application of nitrogen fertilizer of crops grown in the Midwest US.
[Information geo-processing and its statistical treatment in the scope of "montado" project [Portugal]]
platypus Ornithorhynchus anatinus in headwater streams, and effects of pre-Code forest clearfelling, in the South Esk River catchment, Tasmania, Australia
This study examined the occurrence, relative abundance and condition of platypuses in the upper catchment of the South Esk River, in north-east Tasmania, Australia, and the impact of past forestry activities on the occurrence of platypuses in first order headwater streams. The main trapping sites were in twenty first order streams, eight second-fourth order headwater streams and one fifth order stream reach. Additional trapping was also undertaken in the South Esk River and farm dams. Sites were trapped during late spring/mid summer and early autumn.
An Analysis of the Role of Tile-Drained Farmland Under Alternative Nitrogen Abatement Policies
Agricultural nitrogen is a major contributor to Gulf of Mexico hypoxia, and research has shown that agricultural subsurface tile drainage is a major carrier of nitrogen from croplands to streams and rivers. This study compares the results of abating nitrogen under a retired-land minimization policy with those of a new revenue-maximizing policy, paying particular attention to the role of tile-drained land.