What is AGRIS?
AGRIS (International System for Agricultural Science and Technology) is a global public database providing access to bibliographic information on agricultural science and technology. The database is maintained by CIARD, and its content is provided by participating institutions from all around the globe that form the network of AGRIS centers (find out more here). One of the main objectives of AGRIS is to improve the access and exchange of information serving the information-related needs of developed and developing countries on a partnership basis.
AGRIS contains over 8 million bibliographic references on agricultural research and technology & links to related data resources on the Web, like DBPedia, World Bank, Nature, FAO Fisheries and FAO Country profiles.
More specifically
AGRIS is at the same time:
A collaborative network of more than 150 institutions from 65 countries, maintained by FAO of the UN, promoting free access to agricultural information.
A multilingual bibliographic database for agricultural science, fuelled by the AGRIS network, containing records largely enhanced with AGROVOC, FAO’s multilingual thesaurus covering all areas of interest to FAO, including food, nutrition, agriculture, fisheries, forestry, environment etc.
A mash-up Web application that links the AGRIS knowledge to related Web resources using the Linked Open Data methodology to provide as much information as possible about a topic within the agricultural domain.
Opening up & enriching information on agricultural research
AGRIS’ mission is to improve the accessibility of agricultural information available on the Web by:
- Maintaining and enhancing AGRIS, a bibliographic repository for repositories related to agricultural research.
- Promoting the exchange of common standards and methodologies for bibliographic information.
- Enriching the AGRIS knowledge by linking it to other relevant resources on the Web.
AGRIS is also part of the CIARD initiative, in which CGIAR, GFAR and FAO collaborate in order to create a community for efficient knowledge sharing in agricultural research and development.
AGRIS covers the wide range of subjects related to agriculture, including forestry, animal husbandry, aquatic sciences and fisheries, human nutrition, and extension. Its content includes unique grey literature such as unpublished scientific and technical reports, theses, conference papers, government publications, and more. A growing number (around 20%) of bibliographical records have a corresponding full text document on the Web which can easily be retrieved by Google.
Members:
Resources
Displaying 7306 - 7310 of 9579Effect of Soil Erosion on Europe's Crop Yields
Soil erosion negatively affects crop yields and may have contributed to the collapse of ancient civilizations. Whether erosion may have such an impact on modern societies as well, is subject to debate. In this paper we quantify the relationship between crop yields and soil water available to plants, the most important yield-determining factor affected by erosion, at the European scale. Using information on the spatial distribution of erosion rates we calculate the potential threat of erosion-induced productivity losses.
economics of adoption and management of alley cropping in Haiti
relative importance of landscape properties for woodland birds in agricultural environments
1. Studies of landscape change are seldom conducted at scales commensurate with the processes they purport to investigate. Landscape change is a landscape-level process, yet most studies focus on patches. Even when landscape context is considered, inference remains at the patch-level. The unit of investigation must be extended beyond individual patches to whole mosaics in order to advance understanding of faunal responses to landscape change. 2.
Temporal change in forest fragmentation at multiple scales
Previous studies of temporal changes in fragmentation have focused almost exclusively on patch and edge statistics, which might not detect changes in the spatial scale at which forest occurs in or dominates the landscape. We used temporal land-cover data for the Chesapeake Bay region and the state of New Jersey to compare patch-based and area-density scaling measures of fragmentation for detecting changes in the spatial scale of forest that may result from forest loss. For the patch-based analysis, we examined changes in the cumulative distribution of patch sizes.