What is AGRIS?
AGRIS (International System for Agricultural Science and Technology) is a global public database providing access to bibliographic information on agricultural science and technology. The database is maintained by CIARD, and its content is provided by participating institutions from all around the globe that form the network of AGRIS centers (find out more here). One of the main objectives of AGRIS is to improve the access and exchange of information serving the information-related needs of developed and developing countries on a partnership basis.
AGRIS contains over 8 million bibliographic references on agricultural research and technology & links to related data resources on the Web, like DBPedia, World Bank, Nature, FAO Fisheries and FAO Country profiles.
More specifically
AGRIS is at the same time:
A collaborative network of more than 150 institutions from 65 countries, maintained by FAO of the UN, promoting free access to agricultural information.
A multilingual bibliographic database for agricultural science, fuelled by the AGRIS network, containing records largely enhanced with AGROVOC, FAO’s multilingual thesaurus covering all areas of interest to FAO, including food, nutrition, agriculture, fisheries, forestry, environment etc.
A mash-up Web application that links the AGRIS knowledge to related Web resources using the Linked Open Data methodology to provide as much information as possible about a topic within the agricultural domain.
Opening up & enriching information on agricultural research
AGRIS’ mission is to improve the accessibility of agricultural information available on the Web by:
- Maintaining and enhancing AGRIS, a bibliographic repository for repositories related to agricultural research.
- Promoting the exchange of common standards and methodologies for bibliographic information.
- Enriching the AGRIS knowledge by linking it to other relevant resources on the Web.
AGRIS is also part of the CIARD initiative, in which CGIAR, GFAR and FAO collaborate in order to create a community for efficient knowledge sharing in agricultural research and development.
AGRIS covers the wide range of subjects related to agriculture, including forestry, animal husbandry, aquatic sciences and fisheries, human nutrition, and extension. Its content includes unique grey literature such as unpublished scientific and technical reports, theses, conference papers, government publications, and more. A growing number (around 20%) of bibliographical records have a corresponding full text document on the Web which can easily be retrieved by Google.
Members:
Resources
Displaying 2566 - 2570 of 9579Interactions between ecological and social drivers in determining and managing biodiversity impacts of deer
The management of wildlife and its impacts on biodiversity is likely to be most successful where ecological understanding is integrated with the economic and social drivers for management, and where the attitudes and behaviour of stakeholders are fully understood. Collaboration between stakeholders at the landscape level is suggested as the most efficient ‘model’ for the management of many wildlife species such as deer. However, there has been limited research to evaluate the effectiveness of collaborative management for deer or how it is perceived by individual landowners.
Functional zoning for air quality
Environmental local agencies have to enforce European directives that impose a land classification, according to air quality status, to distinguish zones needing further actions from those needing only maintenance. This paper presents a land classification in zones featured by different criticality levels of atmospheric pollution, considering pollutant time series as functional data: we call this proposal “Functional Zoning”.
Do forest owners share the public's values? An application of Schwartz's value theory.
Effect of Widespread Agricultural Chemical Use on Butterfly Diversity across Turkish Provinces
Although agricultural intensification is thought to pose a significant threat to species, little is known about its role in driving biodiversity loss at regional scales. I assessed the effects of a major component of agricultural intensification, agricultural chemical use, and land‐cover and climatic variables on butterfly diversity across 81 provinces in Turkey, where agriculture is practiced extensively but with varying degrees of intensity.
productivity of traditional rice–fish co-culture can be increased without increasing nitrogen loss to the environment
Although the traditional rice–fish co-culture system (RF) efficiently uses water and land resources, provides food security, and does not harm the local environment, it requires improvement because of its small scale and low fish yield. We therefore determined whether fish yield in RF can be increased without increasing nitrogen (N) loss into the environment (i.e., the risk of N pollution) by management of N inputs.