What is AGRIS?
AGRIS (International System for Agricultural Science and Technology) is a global public database providing access to bibliographic information on agricultural science and technology. The database is maintained by CIARD, and its content is provided by participating institutions from all around the globe that form the network of AGRIS centers (find out more here). One of the main objectives of AGRIS is to improve the access and exchange of information serving the information-related needs of developed and developing countries on a partnership basis.
AGRIS contains over 8 million bibliographic references on agricultural research and technology & links to related data resources on the Web, like DBPedia, World Bank, Nature, FAO Fisheries and FAO Country profiles.
More specifically
AGRIS is at the same time:
A collaborative network of more than 150 institutions from 65 countries, maintained by FAO of the UN, promoting free access to agricultural information.
A multilingual bibliographic database for agricultural science, fuelled by the AGRIS network, containing records largely enhanced with AGROVOC, FAO’s multilingual thesaurus covering all areas of interest to FAO, including food, nutrition, agriculture, fisheries, forestry, environment etc.
A mash-up Web application that links the AGRIS knowledge to related Web resources using the Linked Open Data methodology to provide as much information as possible about a topic within the agricultural domain.
Opening up & enriching information on agricultural research
AGRIS’ mission is to improve the accessibility of agricultural information available on the Web by:
- Maintaining and enhancing AGRIS, a bibliographic repository for repositories related to agricultural research.
- Promoting the exchange of common standards and methodologies for bibliographic information.
- Enriching the AGRIS knowledge by linking it to other relevant resources on the Web.
AGRIS is also part of the CIARD initiative, in which CGIAR, GFAR and FAO collaborate in order to create a community for efficient knowledge sharing in agricultural research and development.
AGRIS covers the wide range of subjects related to agriculture, including forestry, animal husbandry, aquatic sciences and fisheries, human nutrition, and extension. Its content includes unique grey literature such as unpublished scientific and technical reports, theses, conference papers, government publications, and more. A growing number (around 20%) of bibliographical records have a corresponding full text document on the Web which can easily be retrieved by Google.
Members:
Resources
Displaying 2361 - 2365 of 9579What determines soil organic carbon stocks in the grazing lands of north-eastern Australia?
This study aimed to unravel the effects of climate, topography, soil, and grazing management on soil organic carbon (SOC) stocks in the grazing lands of north-eastern Australia. We sampled for SOC stocks at 98 sites from 18 grazing properties across Queensland, Australia. These samples covered four nominal grazing management classes (Continuous, Rotational, Cell, and Exclosure), eight broad soil types, and a strong tropical to subtropical climatic gradient.
Food security, climate change, and sustainable land management. A review
Agriculture production in developing countries must be increased to meet food demand for a growing population. Earlier literature suggests that sustainable land management could increase food production without degrading soil and water resources. Improved agronomic practices include organic fertilization, minimum soil disturbance, and incorporation of residues, terraces, water harvesting and conservation, and agroforestry. These practices can also deliver co-benefits in the form of reduced greenhouse gas emissions and enhanced carbon storage in soils and biomass.
Spatial determinants of hazardous chemicals in surface water of Qiantang River, China
Spatial regression, incorporating spatial error or lag dependency, was performed to interpret determinants of hazardous chemicals at full sub-basin scale and at 500m riparian buffer scale in Qiantang River, eastern coastal China. Monitoring data from 41 monitoring stations were collected between 1996 and 2003 and pretreated for 7 variables—petroleum, hexavalent chromium, total cadmium, total lead, total mercury, total cyanide, and volatile phenol. Results showed that primary predictors and the predictive ability of spatial regression differed with variables and scales.
Modelling soil erosion risk based on RUSLE-3D using GIS in a Shivalik sub-watershed
The RUSLE-3D (Revised Universal Soil Loss Equation-3D) model was implemented in geographic information system (GIS) for predicting the soil loss and the spatial patterns of soil erosion risk required for soil conservation planning. High resolution remote sensing data (IKONOS and IRS LISS-IV) were used to prepare land use/land cover and soil maps to derive the vegetation cover and the soil erodibility factor whereas Digital Elevation Model (DEM) was used to generate spatial topographic factor. Soil erodibility (K) factor in the sub-watershed ranged from 0.30 to 0.48.
Broad-Scale Relationships between Shorebirds and Landscapes in the Southern Great Plains
Stopover use by migrating shorebirds is affected by patch-level characteristics of habitat, but the relative influence of broad-scale factors is poorly understood. We conducted surveys of ten 10-km-radius landscapes in north-central Oklahoma from 2007 through 2009 to examine the influence of the amount and composition of wetland habitats and surrounding land cover on shorebird use during migration.