What is AGRIS?
AGRIS (International System for Agricultural Science and Technology) is a global public database providing access to bibliographic information on agricultural science and technology. The database is maintained by CIARD, and its content is provided by participating institutions from all around the globe that form the network of AGRIS centers (find out more here). One of the main objectives of AGRIS is to improve the access and exchange of information serving the information-related needs of developed and developing countries on a partnership basis.
AGRIS contains over 8 million bibliographic references on agricultural research and technology & links to related data resources on the Web, like DBPedia, World Bank, Nature, FAO Fisheries and FAO Country profiles.
More specifically
AGRIS is at the same time:
A collaborative network of more than 150 institutions from 65 countries, maintained by FAO of the UN, promoting free access to agricultural information.
A multilingual bibliographic database for agricultural science, fuelled by the AGRIS network, containing records largely enhanced with AGROVOC, FAO’s multilingual thesaurus covering all areas of interest to FAO, including food, nutrition, agriculture, fisheries, forestry, environment etc.
A mash-up Web application that links the AGRIS knowledge to related Web resources using the Linked Open Data methodology to provide as much information as possible about a topic within the agricultural domain.
Opening up & enriching information on agricultural research
AGRIS’ mission is to improve the accessibility of agricultural information available on the Web by:
- Maintaining and enhancing AGRIS, a bibliographic repository for repositories related to agricultural research.
- Promoting the exchange of common standards and methodologies for bibliographic information.
- Enriching the AGRIS knowledge by linking it to other relevant resources on the Web.
AGRIS is also part of the CIARD initiative, in which CGIAR, GFAR and FAO collaborate in order to create a community for efficient knowledge sharing in agricultural research and development.
AGRIS covers the wide range of subjects related to agriculture, including forestry, animal husbandry, aquatic sciences and fisheries, human nutrition, and extension. Its content includes unique grey literature such as unpublished scientific and technical reports, theses, conference papers, government publications, and more. A growing number (around 20%) of bibliographical records have a corresponding full text document on the Web which can easily be retrieved by Google.
Members:
Resources
Displaying 2481 - 2485 of 9579Application of multi-agent models to urban expansion in medium and small cities: A case study in Fuyang City, Zhejiang Province, China
In this study, three-phase satellite images were used to define rules for the allocation of time and space in construction land resources based on a complex adaptive system and game theory. The decision behavior and rules of government agent, enterprise agent and resident agent in construction land growth were explored. A distinctive and dynamic simulation model of construction land growth was built, which integrated multi-agent, GIS technology and RS data and described the interaction among influencing agents.
Managing uncertainty in thermal water quality trading programs
Thermal water quality trading is an emerging policy tool that allows thermal polluters to comply with effluent restrictions by paying nearby landowners to plant shade trees. We created a system dynamics model of a hypothetical thermal trading program and conducted scenario analysis to study how weather, climate, and trading behavior might influence program effectiveness.
Property rights and climate change vulnerability in Turkish forest communities: a case study from Seyhan River Basin, Turkey
Turkey is expected to experience significant climate change, including increased temperatures and desertification. As these changes affect forestry, agriculture and animal husbandry, they threaten the livelihoods of forest communities across the country. In addition, other, institutional factors such as the property regime can act in tandem with physical stressors to increase communities’ overall vulnerability to climate change.
Modeling the dioxin emission of a municipal solid waste incinerator using neural networks
Incineration is considered as an efficient approach in dealing with the increasing demand for municipal and industrial solid waste treatment, especially in areas without sufficient land resources. Facing the concern of health risk, the toxic pollutants emitted from incinerators have attracted much attention from environmentalists, even though this technology is capable of reducing solid waste volume and demand for landfill areas, together with plenty of energy generation.
Evaluating Shuttle radar and interpolated DEMs for slope gradient and soil erosion estimation in low relief terrain
The error in slope gradient estimates provided by digital elevation models propagates to spatial modelling of erosion and other environmental attributes, potentially impacting land management priorities. This study compared the slope estimates of Shuttle Radar Topographic Mission (SRTM) DEMs with those generated by interpolation of topographic contours, at two grid cell resolutions. The magnitude and spatial patterns of error in DEM slope, and derived erosion estimates using the Revised Universal Soil Loss Equation (RUSLE), were evaluated at three sites in eastern Australia.