What is AGRIS?
AGRIS (International System for Agricultural Science and Technology) is a global public database providing access to bibliographic information on agricultural science and technology. The database is maintained by CIARD, and its content is provided by participating institutions from all around the globe that form the network of AGRIS centers (find out more here). One of the main objectives of AGRIS is to improve the access and exchange of information serving the information-related needs of developed and developing countries on a partnership basis.
AGRIS contains over 8 million bibliographic references on agricultural research and technology & links to related data resources on the Web, like DBPedia, World Bank, Nature, FAO Fisheries and FAO Country profiles.
More specifically
AGRIS is at the same time:
A collaborative network of more than 150 institutions from 65 countries, maintained by FAO of the UN, promoting free access to agricultural information.
A multilingual bibliographic database for agricultural science, fuelled by the AGRIS network, containing records largely enhanced with AGROVOC, FAO’s multilingual thesaurus covering all areas of interest to FAO, including food, nutrition, agriculture, fisheries, forestry, environment etc.
A mash-up Web application that links the AGRIS knowledge to related Web resources using the Linked Open Data methodology to provide as much information as possible about a topic within the agricultural domain.
Opening up & enriching information on agricultural research
AGRIS’ mission is to improve the accessibility of agricultural information available on the Web by:
- Maintaining and enhancing AGRIS, a bibliographic repository for repositories related to agricultural research.
- Promoting the exchange of common standards and methodologies for bibliographic information.
- Enriching the AGRIS knowledge by linking it to other relevant resources on the Web.
AGRIS is also part of the CIARD initiative, in which CGIAR, GFAR and FAO collaborate in order to create a community for efficient knowledge sharing in agricultural research and development.
AGRIS covers the wide range of subjects related to agriculture, including forestry, animal husbandry, aquatic sciences and fisheries, human nutrition, and extension. Its content includes unique grey literature such as unpublished scientific and technical reports, theses, conference papers, government publications, and more. A growing number (around 20%) of bibliographical records have a corresponding full text document on the Web which can easily be retrieved by Google.
Members:
Resources
Displaying 1596 - 1600 of 9579How Can We Improve Mediterranean Cropping Systems?
In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason, crop management technologies have been developed, with a special focus on the Mediterranean region, to enhance crop production by increasing land productivity and sustaining soil fertility under influence of climate changes and population increases.
GENDER INFLUENCE ON THE INCOME OF MAIZE FARMERS IN GIWA LOCAL GOVERNMENT AREA OF KADUNA STATE
The purpose of this study was to determine the influence of gender on the farm income of maize farmers in the study area. Primary data obtained using structured questionnaire were employed in the study and the data were collected from a sample size of 100 maize farmers comprising of 70 males and 30 females.
Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change
We can effectively monitor soil condition—and develop sound policies to offset the emissions of greenhouse gases—only with accurate data from which to define baselines. Currently, estimates of soil organic C for countries or continents are either unavailable or largely uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of organic C in the soil of Australia.
Spatial Patterns of Breeding Success of Grizzly Bears Derived from Hierarchical Multistate Models
Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes.
Soil Moisture Active Passive Experiments (SMAPEx): Toward Soil Moisture Retrieval From the SMAP Mission
NASA's Soil Moisture Active Passive (SMAP) mission will carry the first combined spaceborne L-band radiometer and Synthetic Aperture Radar (SAR) system with the objective of mapping near-surface soil moisture and freeze/thaw state globally every 2-3 days. SMAP will provide three soil moisture products: i) high-resolution from radar (~3 km), ii) low-resolution from radiometer (~36 km), and iii) intermediate-resolution from the fusion of radar and radiometer (~9 km).