Resource information
Encroachment of nitrogen-fixing trees and shrubs into grasslands and savannas is a well-documented land cover change that occurs worldwide. In the Rio Grande Plains region of southern Texas, previous studies have shown woody encroachment by leguminous Prosopis glandulosa (mesquite) trees increases soil C and N, decreases microbial biomass N relative to soil N, and accelerates N mineralization and nitrification. We examined responses of the dominant organic N components in soil (amino acids and amino sugars) and two soil-bound protein-N acquiring enzymes (arylamidase and β-N-acetylglucosaminidase) along a grassland-to-woodland successional chronosequence to determine changes to soil N chemistry and extractability. The proportion of total N held within amino compounds was significantly lower in the woodlands (47 %) relative to the grassland soils (62 %). This increase in non-hydrolysable N was accompanied by increases in plant cell wall derived amino acids (e.g. hydroxyproline, serine) and losses of microbial amino sugars, indicating the woodland organic N pool was altered in composition and potentially in quality, either because it was more structurally protected or difficult to degrade due to polymerization/condensation reactions. Soil carbon-normalized activities of both soil-bound N-acquiring enzymes were significantly higher in woodland soils, consistent with changes in the biochemical composition of organic N. Although soil total N increases following woody encroachment, this additional organic N appears to be less extractable by chemical hydrolysis and thus potentially in more refractory forms, which may limit microbial N accessibility, slow the cycling of soil organic carbon, and contribute to observed soil C and N accrual in these systems.